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Mielnik and Cantoni Transition Probabilities

Sylvia Pulmannova'

Received September 29, 1988

It is shown that when a Mielnik transition probability space is given, Cantoni
transition probabilities can also be defined on it. A condition is given under
which these transition probabilities are equal.

1. INTRODUCTION

By a transition probability space (tps) we mean a couple (S, p) where
S is an abstract set and p: $ X S—[0, 1] satisfies the following conditions:

(i) pla, B)=1iff a =B.

(ii) p(e, B)=0iff p(B, a)=0.

(iti) Calling o and B orthogonal (a L B) if p(a, B8) =0, we have

Y pla,B)=1

BeR

for every maximal pairwise orthogonal subset R of S and every a€ S.

The set S is interpreted as a set of states of a physical system and
p(a, B) as the probability of transition from the state a to the state 8. The
notion of an abstract transition probability space was introduced by Mielnik
(1968). We note that our definition is more general than Mielnik’s original
definition: we replaced the symmetry condition p(e, 8)=p(B, @) by the
weaker condition (ii).

It has been shown that to every tps an orthomodular structure (a
quantum logic) is related (Belinfante, 1976; Deliyannis, 1984; Pulmannova,
1986). Recall that a quantum logic is a partially ordered set L with 0 and
1, with the orthocomplementation ": L - L such that:

(i) (a') =a.
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(ii) a=b implies b'=a’.

(iii) ava'=1. _

(iv) Calling a, be L orthogonal (a L b), if a=<b’, the supremum V a;
exists in L for any sequence {a;} of pairwise orthogonal elements of L (i.e.,
L is a-orthocomplete).

(v) a=b implies that there is ce L such that c L a and avc=>b (i.e.,
L is orthomodular).

A state on quantum logic L is a map m: L—>[0, 1] such that (i) m(1) =1
and (ii) m(V a;) =X m(a;) for any sequence {a;} of pairwise orthogonal
elements of L. That is, a state is a o-additive probability measure on L.

A logic L is called orthocomplete if \/ a; exists in L for any set of
pairwise orthogonal elements of L. A state m on L is called completely
additive if m(\ a;) =Y m(a;) for any set {a;} of pairwise orthogonal ele-
ments of L such that \/ a; exists in L.

A set M of states on L is ordering if a £ b implies that there is me M
such that m(a)> m(b), and strongly ordering if a # b implies that there is
me M such that m(a) =1 and m(b) # 1.

A functional quantum logic is a set L<[0, 11", where M is any set,
which satisfies the following conditions:

(i) 1€ L, where 1(x) =1 for all xe M.

(ii) fe L implies 1—-fe L.

(iii) With f and g called orthogonal (f L g) if f+g=1 [i.e., f(x)+
g(x)=1 for all xe M], we have Y f;e L for any sequence {f;} of pairwise
orthogonal elements of L.

The set (L, =,’,0,1), where f=g iff f(x)=g(x) for all xe M and
f'=1—f, is a quantum logic. Moreover, every x€ M generates a state mi,
on L by the prescription m,(f)=f(x), and the set {m,|m e M} is ordering
for L (Maczynéki, 1974). The set {m,|x € M} is strongly ordering for L if
{x|f(x)=1}={x|g(x)=1} implies f=g. A functional quantum logic is
orthocomplete if the condition (iii) is replaced by:

(iii") ¥ fie L for any set {f;} of pairwise orthogonal elements of L.

2. CANTONI TRANSITION PROBABILITIES ON A TPS

An observable on a quantum logic L is a map x from the Borel subsets
B(R) of the real line & to L such that:

(i) x(®)=1.

(ii) x(E°)=x(E)', where E°=% —E.

(iii) x(U E;)=V x(E;) for any sequence {E;} of disjoint elements of
B(R).

If m is a state on L, then m, = m ¢ x is a probability measure on B(R).
Let x be an observable and p, g be states on L. Then there is a finite Borel
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measure o such that p,., g, < o and the expression

d ) 1/2 d . 1/2
TL/Z(P,q)=J (ﬁ) (;Z;) do

is independent of o. Following Cantoni (1975); we define

T(p, q)=ir;f T.(p, 9)

where the infimum is over all observables on L. The T(p, q) is the Cantoni
transition probability for p, q.

Let (S, p) be a tps and let L be the corresponding quantum logic. To
sketch briefly the construction of L, we shall follow Pulmannova (1986).
Let us denote by % the set of all pairwise orthogonal subsets B of S. We
suppose that @€ B and {a}e B for any a € S. By Zorn’s lemma, to every
Be @ there is a C € R such that Bu C is a maximal subset of pairwise
orthogonal elements of S (a base of S). For B, B, in # we put B, ~ B, if
there is C € B such that B,u C and B, C are bases of S. Then ~ is an
equivalence relation. Let % be the set of all equivalence classes, i.e.,
% = B/~. Let B denote the equivalence class containing B. We put

fala)= 3 pl(a, B)
BeB

It can be shown that f5 is well defined (i.e., independent of the choice of
the representant B of B),andtheset L= {fglﬁ € %) forms an orthocomplete
atomistic quantum logic with the atoms f,,, where a is the unique represen-
tant of the class &. We note that the atomicity of L is implied by the
conditions (i) and (iii) of the definition of tps. These conditions also imply
that the states m, on L, defined by

m.(f5)= L pla,B)
BeB
must be pure (i.e., m, cannot be represented as a convex combination of
any other states mg, m,, B, Y€ S). As a consequence of (iii), we get that L
is orthocomplete and the states m,, @ € S, are completely additive.

To simplify the notations, we shall write « instead of m, to denote
the state on L generated by the element a € S. To compare the Cantoni
transition probabilities T(«a, 8) with the original transition probabilities
p(a, B), we shall use the Gudder (1981) expression

T(a, B)?=infY a(a)"?p(a)"

where the infimum is over all finite maximal orthogonal sequences in L (an
orthogonal sequence {a,, a,,..., a,} is maximal if Vi, a=1).
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Theorem 1. Let (S, p) be a tps. Then
T(a, B)*=inf ¥ p(a,y)"’p(B,v)"?
R YER

where the infimum is over all bases R of S.

Proof. By atomicity and orthomodularity of L, every ac L can be
expressed as a supremum of pairwise orthogonal atoms. Let {a;};,=, be a
finite maximal orthogonal sequence in L. Let af=Vj by, i=1,2,...,n,
where {b;}; are sets of mutually orthogonal atoms in L. By the Schwarz
inequality,

n n 1/2 1/2
b a(ai)l/zﬁ(ai)l/zz ) [Z a(bij)j] [Z B(by)]
i=1 i=1 L J
=YY a(b)*B(b)" = T plas 1) p(B, )"

ij ve
where R ={b;),; is a base of S. [Recall that atoms in L are of the form f,
and a(f,) = p(e, v).] This implies that

T(a, 3)1/2: inf 3, a(ai)l/zﬁ(ai)l/z
zinf ¥ pla, v)’p(B, v)'"?
R veR

where the first infimum is over all finite maximal orthogonal sequences {a;}
in L and the second infimum is over all bases R of S.
For every base R of S we have

Y pla, v)?p(B, y)/* =sup ZK pla, v)?p(B, v)'?

yeR K

where the supremum is over all finite subsets K of R. Therefore, there is a
sequence {K,} of finite subsets of R such that

L play)Cp(B, ) =lim ¥ play)"p(B,7)"

vekK,
For every K,,,
{filveKa}u { \ fy}
yeR-K,
is a finite maximal orthogonal sequence in L. We have

1/2
) P(a,v)l/zp(ﬁ,v)‘/er[ ) p(a,v)}

veKy, veR-K,

1/2
X[ ) p(ﬁ,v)] 2ZRp(a,ﬂy)”zp(ﬁ,“y)”2

yeR-K,
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which implies that

1/2 1/2
lim[ ) p(a,v)] [ Y p(B,v)} =0

20 [ yeR-K, yeR-K,
From this it follows that for every base R,

Y pla, v)'?p(B,v)?=inf ¥ a(a)*B(a)"’?

yeR
where the infimum is over all finite maximal sequences {a;} such that every
q; is the supremum of some f,, v € R. This, together with the first part of
the proof, yields the required equality. W

Corollary 1. T(a, B) has the following properties:
(i) T(a,B)=1, T(a,B)=1iff a =p.

(i) T(e, B)=T(B, ).

(iii) T(e, B)=min{p(e, B), p(B, a)}.

Proof. (i)
T(a, B)"?=inf ¥ pla, ¥)"’p(B, v)'"”
vyeR
1/2 1/2
Sigf[ 2 pla, 7)} [Z p(B, v)] =1
YER veR
If « =B, then

T(a,a)”2=irlgf Y pla,y)=1

veER
On the other hand, let
inf ¥ pla, v)"p(p, 77 =1

vyeR

Take R such that a € R; then p(e, y) =0 for y€ R — . Therefore
1= pla,y)"?p(B, v)"*=p(B, 2)'?
vyeR

which implies 8 = a.

(ii) is immediate.

Note that (i) and (ii) are satisfied by any Cantoni transition prob-
abilities.

(iil) Take R such that 8 R. Then

Y pla, v)'?p(B, v)*=p(e, B)>=T(a, B)'*

YeR

Similarly, taking R such that « € R, we obtain p(B, a)= T(«, B).
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Corollary 2. We have T(a,.B) = p(a, B) iff for every base R of S the
following inequality holds:

(e, B)'?= Y pla, v)/’p(B, v)'?

yeR
If a, B are unit vectors in a Hilbert space H and p(e, 8)=[a, B)/,
where (-, -) is the inner product in H, then for every orthonormal base R
in H we have

Ka, B) = ZR<a, Yy B = ZR e, MIKB, 7]

so that the condition of Corollary 2 is satisfied [compare with Hadjisavvas
(1982)]. The condition of Corollary 2 can be considered as a necessary
condition of the embeddability of a tps into a Hilbert space. In particular,
this condition implies the symmetry of p. The following example (Belinfante,
1976) shows that the condition of Corollary 2 need not be satisfied even in
a symmetric tps:

o B Y 8 m p € 7
« 1 0 0 a 1-a a 0 0
B 0 1 0 1—a a 1—a-b b 1-b6
v 0 0 1 0 0 b 1-b b
8§ a 1-a 0 1 0 1-b b 1—-a-b
7 1-a a 0 0 1 b 0 a
p a 1—a-b b 1-b 0 1 0 1-a
e 0 b 1-b b 0 0 1 0
n 0 1-b b 1—a-b a 1-a 0 1

There are four bases, (o, 8, v), (e, €, 1), (¥, 8, ), (m, p, €). An easy compu-
tation shows that T(B, ¢) =(1—a)b, while p(B, €)= b.
Note that if the tps is generated by a (total) transition amplitude space
(Gudder and Pulmannovd, 1987), the condition of Corollary 2 is satisfied.
Let f, € L be defined by f,(B) = p(B, @), B € S. Let x, be the observable
defined by
fa if 1€E, OgE
1-f, if 12¢E, OeE
0 if 1¢E, 0¢E
1 if 1eE, 0c¢E
Proposition 1. Let (S, p) be a tps. Then for every a, 8¢ S, p(B, a)=
T, (o, B).

Proof. For any observable x we have
Ti(a, B)/*=inf ¥ a.(E)'*B(E)"

x.(E)=
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where the infimum is over all finite Borel partitions (Gudder, 1981). For
any finite Borel partition which is fine enough to separate 0 and 1, we have

Y a (E)'B (BN =a(f)'?B(f)" "+ a(1-£)2B(1 - £)'?

=p(B, a)"”?
Therefore, T, (o, B)=p(B,a). A

3. METRICS ON A TPS
Gudder (1981) has shown that

di(a, B)={2[1—T(a, B)"’}'/

is a metric on the states of a logic L. In the case of a tps logic, d, is a metric
on S. By Cantoni (1985),

dy(a, B) =2 arccos[ T(a, B)"*]

is also a metric on S. It is easily seen that the topologies induced by d, and
d, are equivalent.
For a subset M of S put M*={a € S|p(a, B)=0 for all B M}.

Proposition 2. Let (S, p) be a tps satisfying the condition of Corollary
2.If M < Sis such that M = M*~, then M is closed in the topology induced
by d =d, (or d =d,).

Proof. Let a,€ M, d{«a,, @) 0. Let € M~. Then p(e,, 8)=0, which
implies T(a,,B)=0, n=1,2,.... Therefore d(a, a,)+d(B,a)=
d(a,, B)=+v2. Hence d(a, B)=+2, which implies T(a, 8)=p(a, 8)=0,
hence a € M** =M.

We say that a subset M of S is a subspace if for any finite subset F
of M we have F~*c M. Proposition 2 implies that provided the condition
of Corollary 2 is satisfied, every finite subspace F~* is topologically closed.
Itis an open question under what conditions on a tps the equality M4 = M+~
holds for every subspace M of S. W
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